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Abstract. The properties of a diluted spin-glass model are reviewed. This model interpolates
between a spin glass and a frustrated lattice gas which displays glassy behaviour at high density.

Using the effective potential introduced by Franz and Parisi, we show in the mean-field
formalism that its static properties are closely related to those of the p-spin-glass models. These
models are strongly related to glass-forming liquids. In the mean-field formalism they exhibit in
fact a dynamical transition described by the same equations as in the schematic mode-coupling
theory.

Compared to the p-spin model, the frustrated lattice gas model is more appropriate for
describing a supercooled liquid, being constituted essentially of diffusing particles. Numerically
in three dimensions we in fact show that the frustrated lattice gas model exhibits qualitatively
the properties of glass-forming liquids. Interestingly, the diffusion coefficient exhibits a sharp
crossover from a power-law behaviour at low density to a Vogel–Fulcher or Arrhenius behaviour
at high density, suggesting a crossover from mode-coupling behaviour to a hopping regime.

1. Introduction

There are many physical systems and models which exhibit a glass transition, and it is
therefore extremely important to understand the problem of universality in glassy systems.
It is known that a generalization of spin glasses, namely the p-spin-glass models, in the mean-
field formalism exhibit general properties closely related to those of glass-forming liquids.
Nevertheless they are microscopically quite different from liquids. In fact they are spin models
interacting via p-body interactions with quenched disorder, and thus bear no resemblance
to a liquid. The aim of this article is to introduce a lattice model which, beside having
properties closely related to those of p-spin glasses in the mean-field formalism, is constituted
from diffusing particles, and is therefore well suited for studying quantities like the diffusion
coefficient, and the density–density correlation functions, that are usually important in the
study of liquids.

2. Spin glasses and p-spin models

Spin glasses are well described by the Edwards–Anderson model, defined by the Hamiltonian

H =
∑
ij

Jij SiSj (1)

whereSi = ±1, and the interactionsJij are random quenched interactions distributed over
positive and negative values, such that the average〈Jij 〉 = 0. Spin glasses exhibit a second-
order transition at a temperatureT = TSG, where the Edwards–Anderson order parameter
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vanishes as the temperature approachesTSG from below. At this same temperature there is
also a dynamical transition characterized by a diverging relaxation time.

A generalization of the Edwards–Anderson spin-glass model is the p-spin model [1]. In
these models the spins interact via p-spin interactions. For example, forp = 3, the Hamiltonian
is given by

H =
∑
ijk

JijkSiSjSk (2)

where the interactionsJijk are random quenched interactions distributed over positive and
negative values, such that the average〈Jijk〉 = 0.

This model exhibits, in the mean-field formalism, a thermodynamic first-order transition
at a temperatureTs , and a dynamical transition at a higher temperatureTD > Ts , characterized
by a diverging relaxation time. This dynamical transition is described by the same dynamical
equations of the mode-coupling theory for supercooled liquids [2, 3]. Recently the interplay
between statics and dynamics has been elucidated by Franz and Parisi [4], introducing the
method of coupling two replicas of the system.

3. Coupling replicas

Consider two identical replicasA andB of the spin model (2), coupled by a ferromagnetic
interaction:

H = HA +HB − ε
∑
i

SAi S
B
i . (3)

The overlap between the two replicas is given by

q = −∂F
∂ε
= 1

N

∑
i

SAi S
B
i (4)

whereF(ε) is the free energy per site of the coupled replicas (3). The quantityq plays here
the role of an order parameter. For high temperatureq = 0, while for low temperature in the
glassy phaseq 6= 0.

The need for coupling two replicas comes from the fact that we must explicitly break the
symmetry in order to find the order parameter. For an Ising ferromagnet, for example, the
symmetry that is broken in the ordered phase is the simple up–down symmetry, so in that case
we can couple the system to a magnetic field, and then let the field go to zero. Here we do not
know a priori the symmetries which are broken in the glassy phase, so we couple the system
to a copy of itself. In this way each of the two copies, sayA, plays the role of a staggered
field εSAi acting on the corresponding sites of the other replicaB. It is clear that, forε > 0,
the two replicas are constrained to be in the same ‘free-energy valley’, and this will be true
also if we letε → 0+. The symmetry will then be explicitly broken and we will find an ‘order
parameter’q different from zero.

The effective potentialV (q) is the Legendre transform ofF(ε):

V (q) = max
ε

[F(ε) + εq] (5)

which has the property∂V /∂q = ε. The equilibrium values ofq corresponding toε = 0 are
therefore the minima of the effective potentialV (q).

Franz and Parisi [4] have calculated the effective potential for the p-spin model withp = 4.
For high temperature they found one minimum corresponding toq = 0. As the temperature
is lowered belowTD, a new secondary minimum at a valueq > 0 appears. At the temperature
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Ts the secondary minimum reaches the level of the minimum atq = 0, and a thermodynamic
first-order transition appears.

Interestingly, the temperatureTD coincides with that of the dynamical transition, and
the dynamic equations are the same as those predicted by the schematic MCT theory for
supercooled liquids.

The dynamical interpretation of the static picture is that, in the mean-field formalism,TD
marks the onset of metastable states with infinitely long lifetime. When the two replicas are
in the same metastable state, the value ofq is higher than zero, while if they are in different
states,q = 0. As different metastable states are characterized by the same internal energy and
entropy, the difference between the values ofV (q) for the two minima,1V , can be interpreted
as the configurational entropy6 (also called the complexity, which is the logarithm of the
number of metastable states) multiplied byT . As T approaches the static transitionTs , 1V
goes to zero and consequently the configurational entropy vanishes. This picture has also been
verified for hard spheres using the hypernetted-chain approximation [5]. In 3D one expects
this picture to hold also for supercooled liquids, except that the metastable state now has a
finite lifetime, and therefore the relaxation time is expected to show an apparent power-law
divergence atTD corresponding to the prediction of the mode-coupling theory, with a crossover
towards a Vogel–Fulcher behaviour asT → Ts .

The p-spin models have elucidated very nicely the approximations involved in MCT
theory, and the mechanism of the arrested dynamics which occurs atTD based on the onset of
metastable states. However, it is difficult to get microscopic insight into the molecular motion
of a supercooled liquid as it approaches the glass transition. In fact the model is microscopically
very different, and the interaction is rather unphysical since the spins interact via interactions
involving three or more bodies. Moreover the generalization of the model in finite dimensions
is not straightforward.

4. The frustrated lattice gas model

To gain a better insight into the motion of the particles we want to discuss a simple model
which combines features of spin glasses and lattice gas.

The concept of frustration in spin glasses can be quantitatively defined [6]. For example,
in the nearest-neighbour±J Ising spin-glass model, a loop is frustrated when the spins cannot
satisfy all of the interactions along it. It is easy to verify that a loop is frustrated if and only if
the product of the signs of the interactions equals−1.

In glass-forming liquids frustration arises as a packing problem, and is formally less clearly
defined. In systems without underlying crystalline order, frustration is typically generated
by the geometrical shape of the molecules which prevents the formation of close-packed
configurations at low temperature or high density. For systems with underlying crystalline
order, frustration arises when the local arrangement of molecules kinetically prevents all of
the molecules from reaching the crystalline state.

To model systems without underlying crystalline order, we consider the following spin-
glass model diluted with lattice gas variables [7,8]:

H = −J
∑
〈ij〉
(εij SiSj − 1)ninj − µ

∑
i

ni . (6)

Here the occupancy variablesni = 0, 1 have the internal degrees of freedomSi ± 1,
εij = ±1 are quenched random interactions, andµ is the chemical potential for the particles.

This model reproduces the±J Ising spin glass in the limitµ → ∞ (all sites occupied,
ni ≡ 1). We will consider here the other limit of largeJ . In this case the model describes
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a frustrated lattice gas with properties recalling those of a ‘frustrated’ liquid. In fact the first
term of Hamiltonian (6) implies that two nearest-neighbour sites can be freely occupied only
if their spin variables satisfy the interaction—that is, ifεijSiSj = 1—otherwise they feel a
strong repulsion.

To make the connection with a liquid, we note that the internal degree of freedomSi
may represent for example internal orientation of a particle with non-symmetric shape. Two
particles can be nearest neighbours only if the relative orientation is appropriate; otherwise they
have to move apart. Since in a frustrated loop the spins cannot satisfy all of the interactions, in
this model particle configurations in which a frustrated loop is fully occupied are not allowed.
The frustrated loops in the model are the same as in the spin-glass model and correspond for
the liquid to those loops which, due to geometrical hindrance, cannot be fully occupied by the
particles. A connection between frustrated loops in spin glasses and defect lines in ordinary
glasses has been discussed by Rivier [9].

The model (6) has been solved in the mean-field formalism [10] for any value ofJ and
µ. The phase diagram in theJ–µ plane shows a line of critical points starting on the axis
µ = ∞, where the transition coincides with the Ising spin-glass transition. Asµ decreases the
critical valueJc increases, and the transition is still in the same universality class of the Ising
spin-glass transition, up to a valueJ ∗c above which the transition becomes first-order-like in
the p-spin model [1]. And, just like in p-spin models, there appears another critical valueµD
signalling the onset of a metastable phase.

In conclusion, for fixed high values ofµ, on varyingJ the model behaves as the Ising
spin-glass model, while for large values ofJ , on varyingµ the model behaves as a p-spin
model, characterized by a static first-order thermodynamic transition at low temperature, and
a characteristic higher temperatureTD signalling the onset of metastable states.

We have calculated [11] the effective potential for large values ofJ , and we find the same
behaviour as was found in the p-spin model and in the hard-spheres hypernetted approximation.
In this case the two replicas have been coupled through a termε

∑
i n

A
i n

B
i , wherenAi andnBi

are the lattice gas variables of replicasA andB, respectively. Given the free energy per site
F(ε) of the coupled replicas, we consider the order parameter

qd = −∂F
∂ε
= 1

N

∑
i

〈nAi nBi 〉. (7)

The equilibrium values ofqd will be given by the minima of the effective potential

V (qd) = max
ε

[F(ε) + εqd ].

In figure 1 we showV (qd) for three values ofµ, which plays here the role of an inverse
temperature. There is a valueµD at which a high-qd secondary minimum appears, together
with an exponential number (given by eN6 , where6 = 1V is the complexity) of metastable
states. At a higher valueµs (at lower temperature) the secondary minimum reaches the level
of the low-qd minimum, and there is a first-order transition to a glassy phase.

Since in the mean-field formalism the appearance of the metastable states is the mechanism
for the dynamical transition, we expect in the frustrated lattice gas model, for large values ofJ ,
the same dynamical properties as those of the p-spin model, and therefore a dynamical transition
described by the same equations as are found in the mode-coupling theory for simple liquids.

To find the behaviour of the model for largeJ in finite dimensions, Monte Carlo
calculations have been performed on a cubic lattice [8,12].

We thermalize the system (6) with some chemical potentialµ, and obtain some equilibrium
density of particles (sites withni = 1). Then we perform a diffusive dynamics, where particles
can only move from a site to a nearest-neighbour site, but their total number is held fixed. In
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Figure 1. The constrained potentialV (qd) in the
mean-field model, forJ = 4 and (from top to bottom)
µ = −3.192,−3.135,−3.079.

Figure 2. Relaxation functions of the density
fluctuations, in the 3D model withL = 16, for
densitiesρ = 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.675.
The wave vector isk = (π/a, 0, 0), wherea is the
lattice spacing.

figure 2 we show the density–density autocorrelation functions for different values of the
density. At very high density it is evident that there are different time regimes, as predicted
by themode-couplingtheory of supercooled liquids, and observed both in some molecular
dynamics simulations of glass-forming liquids [13,14] and in some experimental measurements
for glass-forming liquids. There is first a short-time relaxation, corresponding to relaxation
inside non-frozen domains, surrounded by a frozen ‘cage’; finally there is a long-time regime
(α-relaxation) corresponding to structural relaxation and decay to equilibrium.

In figure 3 we show the mean square displacement of a tagged particle. For low density
the curves show a linear behaviour, which corresponds to normal diffusion. For high densities,
the mean square displacement shows a plateau followed by linear behaviour in the long-time
regime. This feature can also be observed in molecular dynamics simulations [13,14].

The plateaus observed, both in the relaxation functions and in the mean square dis-
placements, are the sign of the glassy nature of the dynamic properties of the model, which
compare well with those of glass-forming liquids.
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Figure 3. The mean square displacement of a tagged
particle as a function of time, in the 3D model with
L = 16, for densities (from top to bottom)ρ = 0.2,
0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.675.

Figure 4. The diffusivityD as a function of the chemical
potentialµ. While for µ < µc the diffusivity seems to
follow a power law as a function ofµ, for µ > µc there
is a sharp crossover to another regime.

We then plotted the diffusion coefficientD as a function of the density or chemical
potential. The coefficientD is found as the slope of the linear long-time tail of the mean
square displacement as a function of the time. From the data it is found that, in the case where
J = ∞, the diffusion coefficientD vanishes at a value of the densityρc, with a power law as
predicted by the MCT theory [12]. We have also simulated the model in the case whereJ = 5.
The diffusivity behaves in the same way as in the caseJ = ∞, up to a density close toρc,
but it changes behaviour whenρ ' ρc—that is, when the chemical potentialµ if of the order
of 2J . In particular it does not vanish, but exhibits a neat crossover to another regime which
can be fitted by a Vogel–Fulcher form (but also an Arrhenius behaviour cannot be excluded).
In figure 4 we show the diffusivityD as a function of the chemical potentialµ for J = 5.
The crossover in the behaviour ofD may be due to activated processes that happen at a rate
proportional to e−2J . Interestingly, this change of behaviour is also found in experimental
data [15]. The hopping process which is due to the softening of the potential seems to favour
the crossover from mode-coupling or mean-field behaviour to a Vogel–Fulcher or Arrhenius
behaviour.

We have also calculated the relaxation timeτ from the integral of the density–density
autocorrelation functions, and plottedD as a function ofτ (figure 5). For low density the data
show that the SE relationD−1 ∝ τ holds, while for higher densities there is a sharp crossover
to the fractional SE relationD−1 ∝ τ x , with x ' 0.35, not much different from the value
x ' 0.28 found for supercooled orthoterphenyl [15]. We have to point out, anyway, that the
experimental data refer to rotational and not to translational diffusion.

How do we explain the breakdown of the SE relation microscopically?
We have looked at the distribution of quasi-frozen clusters of particles in the system

[12,16], and we found that they grow as the temperature is lowered, until at some temperature
Tg a spanning quasi-frozen cluster appears. The presence of a wide size distribution of quasi-
frozen clusters suggests that the distribution of waiting times before the particles make a
jump should also be wide, and reasonably is expected to become a power law with a cut-off
at large time [17]. This has been verified in the 3D frustrated lattice gas model, where at
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Figure 5. The breakdown of the Stokes–Einstein relation
in the 3D model. The diffusivityD is plotted versus the
integral autocorrelation times of the density fluctuations.
For low densities (or high temperature) the data follow
the SE relationD−1 ∝ τ , while for densities greater
than ρ ' 0.5 they follow the fractional SE relation
D−1 ∝ τ0.35.

Figure 6. The diffusion coefficientD as a function of
the chemical potentialµ for the 3D model with annealed
interactions. The solid curve is a power law.

low temperature we find a wide distribution of waiting times [12]. When there is only one
characteristic time, both the diffusion coefficientD and the relaxation timeτ are related to
it, and therefore they are linked in a simple way via the SE relation. When there is a wide
distribution of waiting times, the diffusion coefficient depends on the form of the distribution
at short time, while the relaxation time depends on the largest time which appears as the cut-off
of the distribution, and as a consequence the Stokes–Einstein relation is broken [18].

In the model, as mentioned before, the frustration has been treated as quenched. On the
other hand in glass-forming liquids frustration evolves over time. So a more realistic model
should be obtained treating the variables from which frustration originates as annealed, and
makingεij evolve in the Hamiltonian (6) as a function of the local environment.

We have performed a diffusive dynamics, where at each step a variableεij , randomly
selected, can change sign if both sitesi andj are vacant. In figure 6 we have plotted the
diffusion coefficientD as a function of the chemical potential. We find that the diffusion
coefficient vanishes, at a value of the chemical potentialµc, following a power law.

These results suggest that, as the temperature lowers, the local environment changes so
slowly that the variablesεij can be treated more and more as frozen, playing the role of
self-induced quenched variables.

5. Conclusions

We have reviewed the properties of the diluted spin-glass model, which interpolates between
the spin glass, for low values of the ratioJ/µ, and the frustrated lattice gas model, for high
J/µ. We have studied the model in this latter limit, both in the mean-field formalism, and in
finite dimensions by Monte Carlo simulations. Its properties in the mean-field formalism are
closely related to those of p-spin-glass models, with a first-order transition at a temperatureTs
in the parameterqd , which is the ‘density overlap’〈nAi nBi 〉 between two replicas, and the onset
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of metastable states at a temperatureTD > Ts .
In finite dimensions the model has a behaviour very similar to that of structural glass-

forming liquids, with two-step relaxations, an apparent power-law singularity in the diffusion
coefficient, and a crossover at low temperatures to a ‘hopping regime’, and the breakdown of
the Stokes–Einstein relation.

Work is in progress to clarify whether the mean-field picture of a discontinuous transition
in the order parameter is still present in finite dimensions.
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